
High-Performance Serverless Data Transfer over
Wide-Area Networks

Eun-Sung Jung, Rajkumar Kettimuthu

Mathematics and Computer Science Division

Argonne National Laboratory

Email: {esjung,kettimut}@mcs.anl.gov

Abstract—We propose a serverless data movement architecture
in which we bypass data transfer nodes, the filesystem stack, and
the host system stack and directly move the data from one disk
array controller to another in order to obtain the highest end-to-
end performance. Under the current data movement architecture,
separate data transfer nodes arbitrate data transfer by input/out-
put to parallel file systems over local-area networks and parallel
file systems read/write actual data from/to disks through disk
controllers. Our new architecture embeds parallel file system
servers and data transfer processes into a disk controller to
eliminate the data path between a data transfer process and a
parallel file system. This prevents the network between those two
entities from being a bottleneck in end-to-end data transfer. In
addition, we propose a parallel data-layout-aware data transfer,
where multiple embedded data transfer processes send segments
of a file concurrently while considering data layout in disks to
improve data transfer performance. Our experimental results
show that our proposed architecture is feasible and outperforms
the traditional architecture significantly.

I. INTRODUCTION

The data produced at U.S. Department of Energy (DOE)

experimental and computing facilities is often shared among

the facilities and collaborating institutions, and the volume

of this data is expected to increase exponentially in the next

several years. Moving large datasets rapidly over wide-area

networks for remote analysis, data distribution, and replication

is becoming a key requirement for science. The emerging

extreme-scale science era will see large numbers of high-

performance data flows with varying quality-of-service (QoS)

requirements. These data flows can be four types: memory

to memory (M2M), memory to disk (M2D), disk to memory

(D2M), and disk to disk (D2D). Science workflows will have

data transfers with computer or instrument memory as source

and/or computer memory as destination as well as with disk

as source and/or destination, since the memory capacities of

the computer systems are not growing at the same rate as the

data acquisition by the sequencers and detectors [1].

Next-generation terabit networks will help. However, the

parallel storage systems on the end-system hosts at institutions

can become a bottleneck for terabit data movement. Current

storage systems are massively parallel rather than a single

disk and are front ended by a complex parallel file system

(PFS) stack. PFS is a widely adopted solution for scientific

applications to support both high performance I/O and large

data sets. PFS utilizes many I/O servers each with many disks

for performance and capacity scaling and stores individual files

over subsets of disks to improve single file performance.

In this paper, our contribution is threefold. We propose a

novel serverless data transfer architecture that eliminates a

long I/O path caused by dedicated data transfer nodes (DTNs).

We also propose an efficient parallel data transfer mechanism

using data layout information. We provide a practical evalu-

ation by applying our new methods to actual hardware and

software packages.

The rest of the paper is structured as follows. In Section

II we present motivations, derived from the drawbacks of

existing systems, for our work. In Section III we present a

novel data transfer architecture, and in Section IV we present a

data layout-aware parallel data transfer mechanism. In Section

V we discuss how we can deploy our methods in a real disk

controller with the capacity of running a few virtual machines.

In Section VI we present experimental results evaluating our

proposed methods. In Section VII we describe related work in

detail. In Section VIII we summarize our work and conclude

with ideas for future work.

II. MOTIVATION

Typically, PFS is shared by compute clusters and DTNs—

basically, dedicated computers used to switch between network

and disks [2]. Figure 1 shows the interaction between the DTN

and PFS for I/O requests. For an I/O operation such as a

read or write, the request is processed by several layers of

system software such as file system, logical device drivers, and

hardware device drivers. A single application I/O request may

be split into several “physical” I/O requests, and these requests

must pass through the interconnection switch that connects the

host bus adapter on the computer system and the disk array

controller. The disk array controller takes the I/O request and

creates one or more I/O requests to the individual disks in

the array. The data is then transferred between the disk drive

and the application memory space with multiple buffering

along the way. Obtaining the highest performance into and out

of such complex I/O systems can be a complicated process,

involving significant software development and tuning.

Although existing data movement efforts have been suc-

cessful in pushing file transfer performance above 10 Gbps,

they will not scale well to 100 Gbps and 1 Tbps. We need

innovative approaches and new data movement architectures

to push end-to-end data transfer performance to 1 Tbps. In the

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPSW.2015.69

557

2015 IEEE International Parallel and Distributed Processing Symposium Workshop

978-1-4673-7684-6 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPSW.2015.69

557

Physical
Disks

Disk Controller
(RAID controller)

Parallel File System

Data Transfer Node Data Transfer
Process

GPFS/Lustre/PVFS

Controller 1 Controller N

Disk Array N

Disk Array 1

yyyy yy

WAN

6. Send over networks

1. File read

2. Logical block read

3. Physical disk block read 4. Physical block data return

4. Logical block data return

5. File data return

Fig. 1: File read process in the current data transfer architec-

ture.

early Internet, computers were used as routers (e.g., ARPAnet

IMP, and later systems), which turned out to be inefficient.

But for wide-area data transfers, the best practice is still to

use dedicated servers (DTNs). When networks run at terabits

per second and a large number of high-performance data flows

emerges, we cannot have these servers in the way between

network and disks. The data-intensive computer architecture

is expected to evolve to accommodate higher-speed data rates

in all levels of data management [1]. For example, the storage

on the node is projected to be 10–100 TB SSD cache or local

filesystem; and high-speed network interface cards (i.e., 40

GB ethernet) will be installed in each node. Even with higher

capacity hardware in I/O paths, however, the complex and deep

I/O systems as in Fig. 1 still pose challenges, as follows.

Deep I/O Path Despite Direct I/O: The remote direct

memory access (RDMA) for wide-area data transfer has been

used on reserved network paths. It avoids kernel memory

copies by bypassing the operating system. The overhead

in end-to-end data transfers in high-performance computing

systems nevertheless remains nontrivial because of deep I/O

paths spanning from disks to hosts via PFS.

Shared Parallel Filesystems: The large PFS used by big

computing facilities is designed to produce large amounts

of aggregate storage bandwidth and provide diverse parallel

access semantics. One primary issue is how applications can

achieve required disk throughput. If 1,000 processes are doing

file system I/O, each process needs to get only 125 MB/s to

achieve an aggregate throughput of 125 GB/s (1 Tbps). In

the case of a file transfer application using a handful of data

transfer nodes, a single-process I/O performance of 125 MB/s

will be insufficient to saturate even a 10 Gbps network link.

Unpredictable I/O Performance: The deep I/O path also

prevents applications from predicting the I/O performance

within a guaranteed range of variance. For example, if disks

are shared by multiple applications, it is hard to guarantee

and/or predict disk I/O performance. With deeper I/O systems

as in Fig. 1, it is intractable to guarantee and/or predict I/O

performance because of resource contention by many appli-

cations, which offset the advantages of bandwidth-guaranteed

network paths through software-defined networks coming in

the near future.

III. SERVERLESS DATA TRANSFER

We propose a serverless data movement architecture, shown

in Fig. 2, in which we bypass DTNs, the filesystem stack, and

the host system stack and directly move the data from one

disk array controller to another in order to obtain the highest

end-to-end performance. Instead of a DTN with a data transfer

process (DTP), a control DTP, which can be placed anywhere,

negotiates with PFS to get real block locations related to the

data. The control DTP then arbitrates data transfer with data

mover DTPs in a disk controller.

Physical
Disks

Disk Controller
(RAID controller)

Parallel Filesystem

Data Transfer Node Data Transfer Process
(Control)

GPFS/Lustre/PVFS

Controller 1 Controller N

Disk Array N

Disk Array 1

yyyy yy

Terabit WAN

CCoC 111111
4. Physical disk block read 5. Physical block data return

GP

3. Block data move request
ata Transfer Process

(Control)

S/Lustre/PVFS

N

Data Transfer Process
(Data Mover)

6. Send over networks

1. File block info request/
 File lock request

2. File block
 info return

Fig. 2: Serverless data transfer architecture.

Few commercial products such as DataDirect Networks

(DDN) SFA12K [3] has a similar architecture, in where a

controller has enough hardware capacity (e.g., several CPUs)

to accommodate virtual machines with embedded parallel file

system servers. Fig. 3 shows the reduced I/O path of DDN

SFA12K with embedded parallel file system servers where we

can eliminate the communication overhead between parallel

file system servers and disk controllers.

PFS Server Client

HCA/NIC

Switch

HCA/NIC

HBA

SAN
Switch

HBA

Disk Array 1

yyyy
CA

Sw

CA

HBA

S
S

H

ient

C

h

C

A/NI

witch

A/NI

witch
SAN

it h

HBA

Eliminated I/O path

Fig. 3: Reduced I/O path in DDN SFA12K.

Our serverless data movement architecture goes further than

the architecture in Fig. 3. It can eliminate the I/O path from a

client to a server since a client, a data transfer process, is also

558558

placed in the same disk controller where a PFS server runs.

For the rest of this paper, we will refer to this serverless data

movement architecture as the embedded DTP architecture as

opposed to the traditional DTN architecture.

IV. LAYOUT-AWARE PARALLEL DATA TRANSFER

In general, a data transfer process does not know where

the data blocks for a file are located across actual disks and

does not know how many parallel file servers are involved

in reads and writes of a file. For example, if a remote client

read a large size file from a parallel file system consisting of

8 servers with 10 disks, it is transparent to the client that 8

servers read fragments of the file from 10 disks concurrently

and send the data over the network.

Disk Controller

Disk Array 1

VM

DTP

I/O Subsystem

sk Array

Subsyst

PFS Client

PFS Server

I/O S

PF

PF

Bypass
PFS layer

Fig. 4: Direct I/O access to disks bypassing PFS layer.

This situation changes in two aspects if a data transfer

process is embedded into the disk controller together with

parallel file servers. First, the data transfer process reads/writes

to/from the parallel file system not over networks but through

local memory access. This approach eliminates any chance

that the network between a data transfer process and a storage

system (i.e., a parallel file system) becomes a bottleneck in an

end-to-end data transfer procedure. Second, the data transfer

process is able to see how many parallel file servers and

disks exist in a parallel file system. This approach gives us

a new opportunity to shorten the I/O path and fully exploit

multiple disk I/O in parallel. As long as we know data layout

information of a file, we don’t need a file system layer to pull

data from disks, as in Fig. 4. Here, we assume that both DTP

and PFS are embedded into a virtual machine (VM) hosted

by a disk controller. In addition, we can improve the data I/O

performance by assigning separate disk groups to different data

transfer processes based on data layout information on the fly

so that the data I/O degradation caused by multiple intervening

processes can be prevented, as in Fig. 5. Note that one embed-

ded data transfer process in a certain host/VM may activate

only one parallel file server in the same host/VM because of

PFS’s own operation policy. This is shown by our experiments,

and we thus argue that parallel data transfer processes doing

parallel disk I/O are preferred for the embedded data transfer

process architectures.

Disk Controller

VMnVM2VM1

Disk Array 1

yy

DTP

I/O Subsystem

DTP

I/O Subsystem

DTP

I/O Subsystem O Subsystem

sk A

ystem

DDDDisDDD

I/O Subsy

y 1 y

I/O Subsystem

Fig. 5: Parallel disk I/O access in the embedded DTP archi-

tecture.

To utilize data layout information of a file, however we may

need root privilege to access such information from PFS. In

case of Lustre PFS, there is a user API that provides locations

of objects (i.e., data blocks) of a file. In case of GPFS, we,

however, can get data layout information of a file only with

root privilege using the GPFS API hidden from normal users.

An example of such information is shown in Listing 1. Here,

the FS block size of a GPFS is 4 MB, and file data is striped

across the disks which the GPFS manages. We thus locate

where a certain 4 MB segment of a file is placed in a disk

using a two-tuple (device name, sector number). Note that the

overhead of getting information on data blocks is also existing

in typical data transfer on top of PFS; To read a file, PFS reads

metadata of the file, and reads the real data blocks of the file.

Listing 1: Example of data layout information of a file

FS Block S i z e : 4194304
Inode : 954918 S i z e : 0 x1900000000 B

s t a r t o f f s e t − end o f f s e t NSD: s e c t o r
(i n b y t e s) (i n b y t e s)
−−−
0 − 0 x 3 f f f f f DDN7 14:14694146048
0 x400000 − 0 x 7 f f f f f DDN7 15:14206664704
0 x800000 − 0 x b f f f f f DDN7 16:1601789952
0 xc00000 − 0 x f f f f f f DDN7 17:4039196672
0 x1000000 − 0 x 1 3 f f f f f DDN7 18:7242645504
0 x1400000 − 0 x 1 7 f f f f f DDN7 19:1741070336
0 x1800000 − 0 x 1 b f f f f f DDN7 20:8356888576
0 x1c00000 − 0 x 1 f f f f f f DDN7 21:3760635904
0 x2000000 − 0 x 2 3 f f f f f DDN7 22:4039196672
0 x2400000 − 0 x 2 7 f f f f f DDN7 23:13301342208
0 x2800000 − 0 x 2 b f f f f f DDN7 24:2437472256
−−−

On a receiver side, we need also some mechanisms to

reserve space for incoming data blocks at proper locations.

Even though such mechanisms are not implemented in this

paper, we believe it can be done at several levels such as file

system specific utilities and MPI API [4]. The most feasible

method is to use fallocate file system call in UNIX/Linux

systems [4]. The system call preallocates blocks to a file and

ensures that the space is allocated to the file really not virtually.

The more performance may be achieved through temporary

high-speed storage devices such as SSDs for incoming data,

559559

and sequential writes similar to log-structured file systems [5],

which will be written to real PFS later. Our future work will

investigate these options.

V. PUTTING IT ALL TOGETHER

We can summarize the whole file transfer procedure in the

new embedded DTP architecture as follows.

1) DTPs at the sender and the receiver sites get notified of

a file transfer request.

2) The DTPs at the sender site get data layout information

from the PFS servers in the same node.

3) The proper number of DTPs at the receiver site based

on the architecture is launched.

4) The DTPs at the sender site send the segments of a file

concurrently, and each DTP is responsible of different

groups of disks.

If a disk controller is equipped with several cores and is

able to accommodate several VMs, we can either deploy PFS

servers and DTPs on a VM with multiple virtual CPUs or

deploy them on separate VMs such that data layout informa-

tion exchange is doable over high-speed local networks. For

example, DDN SFA12KE [3] has two disk controllers and can

support up to eight VMs, four VMs per controller.

We use the Globus GridFTP toolkit [6] to implement DTPs,

in particular, globus-url-copy to initiate data transfers. To send

segments of a files, we use the -off and -len options, which

specify the offset and the length of a segment of a file,

repeatedly, in globus-url-copy.

VI. EXPERIMENTAL EVALUATION

In this section, we first present the testbed configuration for

the evaluation of our novel hardware and software architecture

and then give detailed benchmarks comparing the existing

architecture and our architecture in various aspects.

@Argonne

2xController
(DDN S2A9900)

2xController
(DDN S2A9900)

Disk Array 2

Disk Array 1

yy yy

N S2A99

sk Arrayyyy

N S2A99N S2A99

sk Arrayyy

xControl C t lxControl

8 file servers

51 LUNs

8x20G DDR
Infiniband

8 file servers

51 LUNs

Switch�

WAN

DTNs@NERSC

8x20G DDR
Infiniband

10G Myrinet

1G Ethernet

PFS1 PFS2

G Ethernet tt1G

48 port�
Edge switch�

Fig. 6: Testbed configuration.

A. Testbed configuration

We conducted experiments on the testbed located at two

sites, Argonne (IL) and NERSC (CA), as shown in Fig. 6. At

Argonne, two sets of identical parallel file systems, PFS1 and

PFS2, were set up. Each set consists of a disk array, a pair of

disk controllers, and 8 physical machines in which parallel file

servers are running. In our experiments, IBM GPFS is used

as a parallel file system. Each controller exports 51 LUNs

to physical machines and has four 20 Gb DDR InfiniBand

ports, each of which is connected to one physical machine.

Therefore, we can assume that this configuration represents the

disk controller with embedded file servers because the network

bandwidth between the disk disk controller is very high (20

Gb). The physical machines in PFS1 are connected to the ones

in PFS2 through 10 Gb Myrinet such that one machine in

PFS1 can mount the PFS2 file system and vice versa. The

physical machines are connected to a 48-port edge switch via

1 Gb NICs and can send data to other machines at NERSC.

The system architecture at NERSC is a typical architecture

consisting of 4 DTNs and parallel file systems accessible

by DTNs and other computing nodes. Due to limitations of

network connectivity between two sites, most of experiments

are simulated at the Argonne site.

B. Baseline experiments

We measured the baseline network throughput between

Argonne and NERSC by running iperf in one node on each

side. The results are not symmetric. Specifically, the network

throughput from Argonne to NERSC is about 940 Mbps,

whereas the network throughput from NERSC to Argonne

is about 105 Mbps. In our testbed, the network throughput

between two hosts at Argonne and NERSC is limited by 1

GbE NIC installed on the node at Argonne. Since the network

throughput from NERSC to Argonne is too small for some

other reasons such as network congestion on the path, we did

our experiments on the unidirectional case from Argonne to

NERSC.

We conducted experiments on various file sizes from 100

KB to 10 GB while keeping the total transferred data size

the same as 10 GB to measure the effects of file size on the

performance. For example, with the 1 GB file size, ten 1 GB

files are transferred.

Fig. 7 shows the read/write performance of parallel file

systems at both Argonne and NERSC. The read/write time

for a certain file size is averaged over three runs. The results

in Fig. 7 show that the time taken for reads and writes

tends to increase as the file size decreases. Note that the

NERSC system is a production system where multiple users

are actually doing data transfers and the measured times may

not reflect accurate system performance. These results are

obvious in that the ratio of the metadata to the real data of

a file increases as the file size decreases; moreover, small

files tend not to be allocated consecutively in a disk, thus

slow read/write operations on disks. The write performance is

generally better than the read performance in GPFS because,

from an application’s point of view, a write operation is

560560

����� ����� �����
������

	�
���� 	�	����

�������

	����� 	
���� 	�����
�
����

�����

��
����

�����

���
�� 	
���� 	����� 	
���� 	�����
������

	����������

	������

�������

�������

�������

������

�������

	���� 	��� 	����� 	���� 	���
����� 	�����

��
�
��
��
�	

�

�

�

����������

�������������

��������������

������ �!"�

������� �!"�

Fig. 7: Parallel file system performance at Argonne and

NERSC.

completed as soon as an application’s write buffer has been

copied to the pagepool of GPFS [7].

C. Separate data transfer node vs. embedded data transfer
process

We compare the performance of the embedded data transfer

process architecture with the traditional data transfer node

architecture. To simulate the traditional DTN architecture, we

run Globus GridFTP servers on the hosts of PFS1 and read

files stored on disk array 2 through file servers of PFS2, as in

Fig. 8. To simulate the embedded DTP architecture, we run

Globus GridFTP servers on the hosts of PFS1 together with

file servers and read files stored on disk array 1, as in Fig. 9.

@Argonne

2xController
(DDN S2A9900)

2xController
(DDN S2A9900)

Disk Array 2

Disk Array 1

yy yysk Arrayyyy

9999

sk Arrayyy

ll

Switch�

WAN

PFS1 PFS2

ller
900)

22x
(DD(DD

x
DN S2A99 N S2AAA99N S2AAA99

xControl C ttxConttroo

Switch

WAN

File
Server

Globus
Server

48 port�
Edge switch�

Fig. 8: Simulation of the traditional DTN architecture.

The Globus GridFTP provides several parameters for the

tuning of file transfer performance. Among them, three pa-

rameters are most influential on the performance [8]: (1) the

number of concurrency (-cc) which specifies how many servers

are spawned for the transfer and is essential for lots of small

files; (2) the number of streams (-p) which specifies how many

@Argonne

2xController
(DDN S2A9900)

2xController
(DDN S2A9900)

Disk Array 2

Disk Array 1

yy yysk Arrayyyy

N S2A99N S2A99

sk Arrayyy

C t lxControl

Switch�

WAN

PFS1 PFS2

ller
900)

2x
(DDN S2A99

xControl

WAN

File
Server

Globus
Server

48 port�
Edge switch�

Fig. 9: Simulation of the embedded DTP architecture.

partitions for a file are streamed concurrently to the destination

and is essential for a large file; and (3) pipelining (-pp) which

enables pipelined control message exchange to hide message

exchange latency in the case of lots of small files. We use the

following parameters for datasets of different file sizes: -p 4

for 10 GB, -p 4 -cc 2 -pp for 1 GB, 100 MB, and 10 MB, -p

1 -cc 4 -pp for 1 MB, and -p 1 -cc 16 -pp for 100 KB.

1) Data transfer from Argonne to NERSC: We first per-

formed experiments regarding data transfer from Argonne to

NERSC using a single host. The results in Fig. 10 show not

much difference between the traditional DTN architecture and

the embedded DTP architecture except for a small gap in

the case of 100 KB file. That result is because the overall

performance is limited by the capacity (1 Gbps) of the NIC

connected to WAN.

�
#��� ��#��� ��#��� ��#���
��
#���

����#���

�#���

���#���

�$���#���

�$���#���

�$���#���

�$���#���

���	� ��	� ���
	� ��
	� �
	� ����	�

��
��

��
��
��
�	

��
��
�

��

��
�

��
�������

�
�����������

���������������

Fig. 10: Performance comparison in WAN data transfer from

Argonne to NERSC.

2) Data transfer from Argonne to Argonne – Removing NIC
bottleneck: To simulate the situation in which the capacity of

NIC is not bottleneck anymore, we ran an additional Globus

GridFTP server on a different port. We then performed data

transfer locally between two GridFTP servers and set the

561561

destination files to /dev/null such that no overhead is incurred

on the receiver side.

����� ������ ������
����%�

������

�%����

�����

�������

�������

�������

�������

�������

�������

���	� ��	� ���
	� ��
	� �
	� ����	�

��
��

��
��
��
�	

��
��
�

��

��
�

��
�������

�
�����������

���������������

Fig. 11: Performance comparison when the transfer is locally

redirected to /dev/null at Argonne (unoptimized embedded
DTP).

These experiments in Fig. 11 result in improved perfor-

mance compared with the previous experiment in Fig. 10. But,

in these experiments, the performance of the embedded DTP

architecture is worse than the performance of the traditional

DTN architecture. To further analyze the reasons for such

results, we performed microbenchmarks.

a) Improving disk I/O of the embedded DTP architecture:
We observed that the disk I/O performance in the embedded

DTP architecture is inferior to the performance in the tradi-

tional DTN architecture. The reason is that the I/O operation in

the same node where PFS exists activates only one PFS server,

whereas the I/O operation from the remote client activates all

the PFS servers (i.e., 8 servers in our testbed). One process

cannot fully exploit the maximum throughput of 51 disks

in our testbed. We thus run 4 globus-url-copy processes to

concurrently read and send evenly partitioned regions of a file.

In this way, we improve the performance by almost 100%, 17.9

s for 10 GB transfer, as in Table I.

b) Removing any overheads except PFS: We suspect that

the local data transfer between two Globus GridFTP servers

may also be bottleneck. To remove any bottleneck except

PFS related operations, we redirect the destination directly to

/dev/null not to /dev/null via a GridFTP server. For 10 GB,

the results are 11.5 s and 16.51 s for the embedded DTP

architecture and the DTN architecture, respectively. In other

words, the embedded DTP architecture outperforms the DTN

architecture by 43%.

c) Overall comparison: For data transfer using single

node, the embedded DTP architecture could achieve per-

formance improvement up to about 100% using optimized

disk I/O and shortened I/O path eliminating the network

communication between a DTP and PFS servers. Table I shows

a summary of data transfer performances between the DTN

architecture and the embedded DTP architecture regarding

three cases. In the case of FTP-FTP, a file is transferred

from one Globus GridFTP server to the other Globus GridFTP

TABLE I: Data transfer performance comparison in single-

node tests.

Source-Destination Type Embedded DTP DTN Performance
Improvement

FTP-FTP 17.94 36.55 103%
FTP-File 17.82 37.49 110%
File-File 11.50 16.51 43%

TABLE II: Performance comparison with regard to data layout

aware data transfer

Architecture Transfer Time Improvement
Normal embedded DTP 57 Baseline

Layout aware DTP 47 21%
Layout aware DTP w/ sorted segments 40 42%

server which simply redirects the file to /dev/null. In the case

of FTP-File, a file is read from one Globus GridFTP server and

written to /dev/null without going through a Globus GridFTP

server on the receiver side. In the case of File-File, a file

is read from a command (i.e., globus-url-copy) and written

to /dev/null. The performance improvement may come either

from low latency of the shortened I/O path or being free of

network bottleneck between a DTP and PFS servers.

D. Data-layout-aware transfer using multiple hosts

In addition, we conducted experiments involving data-

layout-aware transfer as described in Section IV. We compare

the following two cases. In the first case, the embedded DTP

architecture uses I/O through PFS (DTP-PFS): one DTP at

each of 8 hosts concurrently one of 8 partitions of a 100 GB

file by reading from a PFS directory. For example, the first

node is responsible for sending a partition ranging from 0 to

12.5 GB in the logical address of the file. In the second case,

the embedded DTP architecture uses I/O through raw devices

(DTP-RAW): one DTP at each of 8 hosts is assigned to a

different group of disks and sends segments of a file belonging

to the assigned group of disks. In our testbed, there are 51

LUNs and one host is assigned to 6-7 disks. For example, the

first host is assigned to /dev/sdc through /dev/sdh.

We coded a script for the DTP-RAW case in python. As

many threads as assigned disks are launched at one host to

fully exploit disk I/O throughput. Each thread repeatedly runs

globus-url-copy -off offset -len 4 MB for a segment because

the file block size in our testbed is 4 MB. We have a master

node in which we remotely start the script in each of 8 hosts

using the ssh command. We flush the disk cache ahead of

each run in order to exclude cache effects. We do not use any

DTP server (i.e., globus-gridftp-server) since repeated calls

of globus-url-copy in the DTP-RAW cause more overhead in

terms of setting up data and control channels and hence may

lead to unfair comparison. We copy from a file and redirect

the destination of a file to /dev/null at each host such that no

DTP server is involved in order to measure the PFS overhead

accurately. Fortunately, globus-url-copy supports the file input

with regard to multiple file segment transfers such that the

binary executable does not have to be initiated repeatedly.

We observed I/O activities for all the disks at each node

in the DTP-PFS case since the DTP at each node sends a

562562

TABLE III: Data flow classification

Class Representative Example Benefits from New Approach
M2M In-Situ Analysis and Visualization (e.g., Cos-

mology simulations)
Data in memory should eventually be stored in permanent storage. Faster background
M2D transfers – rates comparable to M2M transfers that happen in parallel to avoid
discarding data.

M2D Data Gathering and Analysis from Experimen-
tal Facilities (e.g., High Energy Physics, Light
Sources)

Faster transfer of data from experimental facilities to user site or remote postprocessing
facility: Move data from acquisition machine’s memory directly to the disk at remote
site.

D2M Remote Data Retrieval for Post Processing (e.g.,
Light Sources)

Similar way as described in the case of M2D.

D2D Data Replication for Efficient Distribution (e.g.,
Climate Science)

Ultra high-speed replication through data transfers directly from disk controllers on
one end to another.

partition of a 100 GB file spanning multiple disks. In contrast,

we observed I/O activities for assigned disks at each node in

the DTP-RAW case. To improve the disk I/O throughput, we

sort the order of file segments by the sector numbers of the

file segments such that sequential reads rather than random

reads are conducted on physical disks. The results are shown

in Table II. The data-layout-aware data transfer method can

achieve up to 42% better performance than that of the normal

embedded DTP architecture.

VII. RELATED WORK

Similar work has been done in the context of backup and

high-performance computing. A network data management

protocol [9] has been proposed to achieve higher disk backup

performance through direct data transfers between backup

devices. A high-performance storage system (HPSS) [10] has

been developed by IBM with DOE laboratories for extreme-

scale storages. HPSS has a cluster design where data mover

hosts are dedicated to data transfers between tape drives and

disks, and data transfers from HPSS to clients. We note that

our approach differs significantly from such work in that we

focus more on the least overhead on data transfers without

dedicated hosts, guaranteeing varying QoS of data flows, and

large numbers of data transfers of various types such as M2M,

M2D, D2M, and D2D. Table III shows how our approach

benefits a broad range of scientific applications belonging to

those data-flow classes.

Active Disks [11] is the seminal work regarding leveraging

the aggregate processing power of CPU and memory in

storage devices. The work aimed to achieve scalable data

processing throughput through networked storage devices. The

work may have failed to gain traction due to security concerns

of downloading user software into storage devices which

vendors would not like to give open access to. However,

from our experience in demonstrating data transfers using

DDN storage boxes at SC’14 [12], VM technology in disk

controller provides safer environment from the perspective of

vendors where privileged operations can be prohibited from

being executed by VMs.

Recently, similar work by Kim et al. [13] investigated disk-

layout aware data transfer in the context of high-performance

computing. A major distinction of our work from [13] is that

our method is lower-level approach in that our method can

move data blocks of a given file set in any order while the

method in [13] is still moving data on a file-by-file basis.

VIII. CONCLUSIONS AND FUTURE WORK

We propose a serverless data movement architecture where

both data transfer processes and parallel file system servers

are embedded into a disk controller. This architecture can

eliminate the communication overhead and potential network

bottleneck between data transfer processes and parallel file

system servers. The experimental results show that our novel

architecture outperforms the existing architecture up to 103%.

We also propose a data-layout-aware transfer method that

can bypass a parallel file system layer after simply getting

data block location information from the parallel file system.

The data-layout-aware transfer method can further improve

the performance up to 42%. We demonstrated our proposed

embedded DTP architecture at SC’14 and achieved a peak

throughput rate of 90 Gb between Starlight, Chicago and

Ottawa, Canada [12]. In the future, we will develop more

sophisticated data-layout-aware transfer algorithms for the

more general problem between a sender with M disk controller

between a receiver with N disk controller where data is

distributed across multiple disk controllers. We also plan to

deploy them in more high-speed networks and storage systems

such as SSD storage, 40G NIC and terabit networks to prove

that this method can push the limit of maximum data transfer

rates.

ACKNOWLEDGMENTS

The submitted manuscript has been created by UChicago

Argonne, LLC, Operator of Argonne National Laboratory

(”Argonne”). Argonne, a U.S. Department of Energy Office

of Science laboratory, is operated under Contract No. DE-

AC02-06CH11357. The U.S. Government retains for itself,

and others acting on its behalf, a paid-up nonexclusive,

irrevocable worldwide license in said article to reproduce,

prepare derivative works, distribute copies to the public, and

perform publicly and display publicly, by or on behalf of the

Government.

This material was based upon work supported by the U.S.

Department of Energy, Office of Science, Advanced Scien-

tific Computing Research Program, under Contract DE-AC02-

06CH11357.

We gratefully acknowledge the computing resources pro-

vided and operated by the Joint Laboratory for System Eval-

uation (JLSE) at Argonne National Laboratory.

563563

REFERENCES

[1] “Synergistic challenges in data-intensive science and
exascale computing,” http://science.energy.gov/∼/media/
40749FD92B58438594256267425C4AD1.ashx, Apr. 2014.

[2] “Science DMZ: A Scalable Network Design
Model for Optimizing Science Data Transfers,”
http://fasterdata.es.net/science-dmz/.

[3] “DDN SFA12K platform,” www.ddn.com/products/sfa12k.
[4] D. Arteaga and M. Zhao, “Towards Scalable Application Checkpointing

with Parallel File System Delegation,” in 2011 6th IEEE International
Conference on Networking, Architecture and Storage (NAS), Jul. 2011,
pp. 130–139.

[5] M. Rosenblum, The Design and Implementation of a Log-Structured
File System, 1st ed. Norwell, MA, USA: Kluwer Academic Publishers,
1995.

[6] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster, “The globus striped GridFTP framework and
server,” in Proceedings of the 2005 ACM/IEEE conference on Supercom-
puting, ser. SC ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 54–64.

[7] T. Jones, A. Koniges, and R. Yates, “Performance of the IBM general
parallel file system,” in Proceedings of the 14th International Parallel
and Distributed Processing Symposium IPDPS, 2000, pp. 673–681.

[8] E. Yildirim, J. Kim, and T. Kosar, “How GridFTP pipelining, parallelism
and concurrency work: A guide for optimizing large dataset transfers,” in
High Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, 2012, pp. 506–515.

[9] “NDMP website,” http://www.ndmp.org.
[10] “High performance storage system overview,” http://www.

hpss-collaboration.org/documents/HPSSIntroduction2009.pdf.
[11] E. Riedel, C. Faloutsos, G. Gibson, and D. Nagle, “Active disks for

large-scale data processing,” Computer, vol. 34, no. 6, pp. 68–74, Jun.
2001.

[12] “Pushing data transfer speed limit,” http://www.ci.anl.gov/blog/
pushing-data-transfer-speed-limit-sc14.

[13] Y. Kim, S. Atchley, G. R. Vallee, and G. M. Shipman, “LADS:
Optimizing Data Transfers using Layout-Aware Data Scheduling,” Feb.
2015.

564564

